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Al»Jtract 

Standard methods for nonlinear equations and unconstrained minimization 

base each iteration on a linear or quadratic model of the objective function, 

respectively. Recently, methods using two generalizations of the standard 

models have been proposed for these problems. Conic methods for uncon­

strained minimization use a model that is the ratio of a quadratic function 

div:ided by the square of a linear function. Tensor methods for nonlinear equa­

tions augment the standard linear model with a simple second order term. This 

paper surveys the research to date on methods. for unconstrained minimization 

and nonlinear equations that use conic and tensor models. It begins with a brief 

summary of the standard methods, so that the paper is essentially self­

contained. 
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1. Introduction 

The two major unconstrained nonlinear algebra problems are the nonlinear 

equations problem 

given F: Rn-.Rn, find Xw.ERn such that F(x.)=O 
where we assume FEC1• and the unconstrained minimization problem, 

minimize J : Rn -.R 
~ERn 

(1.1) 

(1.2) 

where we assume 1 e: C2• Computational methods exist that solve many such 

problems successfully and efficiently. but research aimed at improving these 

methods continues. In this paper, we q_iscuss two recently introduced classes of 

algorithms for solving these problems, conic methods for unconstrained minimi­

zation and tensor models for nonlinear equations. Both classes contain interest-

ing innovations and seem to offer advantages over the standard methods, 

although it is too early to access the ultimate importance of either one. 

We assume the reader has at least some familiarity with computational 

methods for nonlinear equations and unconstrained minimization, although we 

briefiy summarize the leading methods in Section 2. Some survey papers on 

these methods include Brodlie [1977], Dennis (1977], Schnabel [1982a] and More' 

and Sorensen [1982]. The books by Fletcher [1980], Gill, Murray, and Wright 

[1981]. and Dennis and Schnabel [1983] contain a more detailed treatment. 

We will denote the matrix of first partial derivatives of F at x. the Jacobian 

matrix, by F(x)E:RnXn; here F(x)[i,j]=of'L(x)/ ox[j] where /i; Rn~R is the ith 

component function of F(x ). We will denote the vector of first partial derivatives 

off at x, the gradient vector, by 'Vf(x)ERn, and the symmetric matrix of 

second partial derivatives of I at x, the Hessian matrix, by 'V2f (x )ERnxn; 

VJ(x)[i]=Bf/ox[i] and V2J(x)[i,j]=a2j/ox[i]ax[j]. Note that we are denot-

ing the ith component of a vector x by x [ i] so that we can reserve the notation 
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:x, for the ith iterate in a sequence of vectors !x.t ERn j. 

The main difference between standard methods and conic and tensor 

methods is in the local model of the nonlinear function that the method uses in 

determining its iterates. Standard methods for nonlinear equations base the 

step from the current iterate xc upon a linear model of F(x) around xc. 

(1.3) 
where d ~Rn and Jc ERn)t.n is F'(x,) or some approximation to it. Similarly, stan­

dard methods for unconstrained minimization base each iteration upon a qua­

dratic model of J (.z) around Xc • 

(1.4) 

where Uc ER" is VJ (xc) or a finite difference approximation to it. and He ERn><n is 

V2 J (xc) or some symmetric approximation to it. These two models are closely 

related because the minimizer of f (.x) must occur at a point x~e where 

V/ (x,.)=O, and the gradient of the model ( 1.4). 

Vm(xc+d) = Vf (zc) + Hcd (1.5) 

is a linear model of the system of nonlinear equations Vf (x): R"'--.Rn. 

The two new classes of methods are based upon generalizations of (1.3) and 

(1.4). Conic methods fo:r unconstrained minimization base each step on a model 

of the form 

(1.6) 

where Ac: E.Rn><n is symmetric and be ERn. Tensor methods base each iteration 

on a model of the form 

(1.7) 

where. Tc ~Rn><n><n has a particularly simple form. Here we use the notation T, dd 

to denote the vector in Rn whose i th component is 
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n n 
(Tcdd)[i] = ~ ~ Tc[i.j,k]'d[jld[k]. (1.8) 

J=l k=l 

Of course the justification for either of these models is not obvious and we 

explain it in this paper. Conic models were introduced by Davidon [ 1980] and 

also have been investigated by Bjorstad and Nocedal [1979], Sorensen [1980], 

Stordahl [1980], Davidon (1982], Gourgeon and Nocedal [1982], and Schnabel 

[1982b]. Tensor models were introduced by Schnabel and Frank [1982] and also 

are discussed in Frank [ 1982]. The main goal of the developers of tensor 

methods is to improve the performance of existing methods on problems were 

F'(z.) is singular or ill-conditioned, while at least maintaining the performance 

of the existing methods on all other problems. The developers of conic methods 

do not seem to have a similarly limited objective. 

The remainder of the paper is organized as follows. Section 2 provides a 

brief survey of the leading standard methods for nonlinear equations and unconoo,, 

strained minimization, which are based on the models ( 1.3) and ( 1.4) respec­

tively. These include both the derivative methods used when F' (x) or V2j (x) are 

available analytically or from finite differences, and the secant methods that are 

used otherwise. We concentrate on the ideas and properties that are relevant to 

our discussion of conic and tensor methods. A reader familiar with these 

methods should skip or skim Section 2. In Section 3 we briefly discuss several 

extensions of the standard methods that help motivate conic and tensor 

methods. These are the methods of Barnes [1965] and Gay and Schnabel [1978] 

for nonlinear equations and of Davidon [1975] for unconstrained minimization. 

They all still use the standard models ( 1.3) and ( 1.4), but some of their objec ... 

tives and techniques are similar to conic and tensor methods. We discuss conic 

methods in Section 4, and tensor methods in Section 5. We comment briefly on 

the application of these two classes of methods to other nonlinear problems in 

Section 6. 
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In our opinion, this paper covers most of the important methods for non­

linear equations and unconstrained minimization based on nonstandard models. 

There has been occasional other work along these lines, however. Perhaps most 

significant are the methods for homogeneous functions investigated by Jacobson 

and Oxsman [1972], Charalambous [1973]. Kowalik and Ramakrishnan [1976], 

and others. These methods do not seem to have led to improved algorithms for 

general classes of problems. 

2. Standard models and methods 

The fundamental method for solving the nonlinear equations problem is 

Newton's method. It consists of choosing the new iterate, x.,., as the root of the 

linear model of F(x) around xc, 

(2.1) 

the first two terms of the Taylor series. If F'(xc) is nonsingular, (2.1) has a 

unique root at 

(2.2) 

If F(x.)=O, F'(x~) is nonsingular, and F(x) is Lipschitz continuous in an open 

neighborhood containing xll(. then the sequence produced by iterating (2.2) is 

well-defined and converges q-quadratically to x!IC, provided the starting point 

:x0ERn is sufficiently close to x 11 • A method that converges provided it is started 

sufficiently close to the solution is called locally convergent. (For our 

definitions of rates of convergence, see for example Ortega and Rheinboldt 

(1970] or Dennis and Schnabel [1983].) 

There are four weaknesses of Newton's method as a computational pro­

cedure for solving systems of nonlinear equations that we wish to discuss. They 
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are 

(1) The sequence of iterates may not converge to any root if z 0 is not 
sufficiently close to a root. 

(2) The iteration {2.2) is not well-defined computationally if F(xc) is singular or 
ill-conditione d. 

(3) Newton's method usually is slowly locally convergent or does not converge 
at all to a root where F'(x'J() is singular. 

( 4) F'(x) may not be available in practical applications. 

The first difficulty is addressed by modifying (2.2) when necessary so that 

the method converges to a root from starting points outside the region of local 

convergence. This property is called global convergence. The most common 

modifications to achieve global convergence are the line search, where each x + 

is chosen by 

X+= Xc - AcF'(xc )-1F(xc) (2.3) 

for some Ar; >0. and the trust region approach, where x+ is chosen by 

(2.4) 

with a,~o. In both cases. the real valued paramete·r Ar; or ac is selected so that 

x ... is a satisfactory next iterate. for example so that JIF(x ... )ll2 < IIF{xc)ll2• In the 

line search. Newton's method corresponds to 'Ac = 1. and it is guaranteed that 

IIF(x ... )lh~ < IIF(x +)112 for sufficiently small positive Ac. In the trust region formula 

(2.4), Newton's method is O:c =0, and IIF(x ... )!l:a < IIF(xc )!!2 is guaranteed for 

sufficiently large positive ac. Since the new algorithms use the same types of 

modifications to achieve global convergence, we do not discuss these strategies 

further. Many of the references listed in the second paragraph of Section 1 con­

tain information on these strategies. 

Various modification may be made to these methods when F(xc) is singular 

or ill-conditioned. These include: i) replacing F'(xc )-1 in the line search formula 

(2.3} by the pseudo-inverse F(xc)+. where the pseudo-inverse of AERnxn may be 

defined by 
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A+ = lim (AT A +')'l)-1AT; (2.5) 
7'"*0+ 

ii) replacing F'(xc )-1 in the line search by (F'(xc )T F(xc) + ')'l)-1 F'(xc )T with an 

appropriate small positive value of 7; iii) using the trust region iteration (2.4) 

with ac strictly positive. For further information, see Section 6.5 of Dennis and 

Schnabel [1983]. We mention this difficulty mainly because tensor models for 

nonlinear equations deal with it nicely. 

If F(x,.) is singular, the convergence of the existing methods to x. usually 

is linear at best. even with the above modifications. (See Decker and Kelley 

[1980a, 1980b, 1982], Griewank [1980], Griewank and Osborne [1981], Reddien 

[1978, 1980], Rall [1966] for a discussion of the convergence of Newton's method 

on singular problems.) Some modifications have been proposed to speed conver­

gence on singular problems (see many of the same references), but they mainly 

require apriori knowledge that F'(xc) is singular and do not seem suitable for 

general classes of problems. 

If the Jacobian matrix F(x) is not available in analytic form, it rnay be 

approximated by finite differences, meaning that the jth column of F(xs) is 

approximated by 

(2.6) 

for some small hER. (Here ej denotes the jth unit vector.) If the expense of 

this approximation, n additional evaluations of F(x) per iteration, is acceptable, 

this is done and the aforementioned methods are used with (2.6) in place of 

F(:xc ). If the stepsizes h are chosen correctly, these is little or no deterioration 

in performance when changing from analytic to finite difference J acobians. 

If the additional cost of finite difference Jacobian approximation is unac­

ceptable, then a class of methods referred to as secant (or quasi-Newton) 

methods is used instead. These methods replace F'(xc) in formulas (2.2), (2.5), 

or (2.6) by a less precise approximation Jc calculated as follows. At the first 
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iteration, J0 is the finite difference approximation to F'(x0). After the step from 

Zc to :r + is determined, the approximation Jc to F(xc) is updated into an 

approximation J +to F'(x ... ). The most commonly used updating rule is 

(2.7) 

where 

(2.8) 

This update was introduced by Broyden [ 1965]. It obeys the secant equati,on 

(2.9) 

the multi-dimensional generalization of the standard one dimensional secant 

equation. For any J t- that obeys (2.9). the new linear model of F(x) around x .... 

(2.10) 

obeys 

(2.11) 

Update (2.7) is selected because of all the matrices obeying (2.9}, J + given by 

(2. 7} is the closest to Jc in the Frobenius norm. (The Frobenius norm of a 

matrix or tensor is the square root of the sum of the squares of all the matrix's 

or tensor's components.) 

The local method obtained by using (2. 7) to calculate the Jacobian approxi· 

mations with J 0 a finite difference approximation to F(x0), and using 

(2.12) 

to calculate the steps is referred to as Broyden 's method. It is locally q­

superlinearly convergent to a root x • under ~he same assumptions on F(x) and 

x. stated above for the q-quadratic convergence of Newton's method. Notice 

that a secant method for nonlinear equations requires the values of F(x) at the 

iterates. and no other function or derivative values. In general, secant methods 

for nonlinear equations or unconstrained minimization usually require more 

iterations to solve a particular problem than the corresponding analytic or finite 
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difference derivative method, but they usually require fewer function evalua-

lions than the finite difference method. Thus they usually are preferred for 

problems where function evaluation is expensive and analytic der·ivatives are 

unavailable. 

The above ¢Uscussion of secant methods, while cursory, contains the back­

ground required for our forthcoming consideration of conic and tensor models. 

In particular, we emphasize the interpolation property ( 2.11) that results from 

formulas (2.9) and (2.10). For further information on these methods. see Dennis 

and More' [1977], or the references in paragraph 2 of Section 1. 

Now let us turn to unconstrained minimization. Newton's method for 

unconstrained minimization is based on the quadratic model off (x) around Xc. 

(2.13) 

the first three terms of the Taylor series. If '\/2/ (xc) is positive definite. 

m(xc +d) has a unique minimizer at 

(2.14) 

Alternatively. the iteration (2.14) can be derived by considering the linear model 

of '\If (x) around Xc;. 

(2.15) 

and selecting x+ as the root of M(xc +d). Viewed in this way, (2.14) is just the 

application of Newton's method for nonlinear equations to the problem '\If (x )=0. 

Therefore it is locally q-quadratically convergent to any point x • where 

Vf (x.)=O. V2f (x.) is nonsingular, and V2/ (x) is Lipschitz continuous in an open 

neighborhood containing x •· Such a point may be a minimizer, maximizer, or 

. saddle point off (x). 

The four weaknesses of Newton's method for nonlinear equations that we 

discussed carry over to Newton's method for unconstrained minimization, and 

the solutions are similar. Global convergence usually is achieved by modifying 
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(2.14) to 

(2.16) 

or 

:t+=xc -(V2J(xc)+acl)-1Vf(xc). (2.17) 

In the first case. He = '12/ (:.e,) if V2/ (xc) is safely positive definite, otherwise He 

is some positive definite modification of rJ2 J (xc ), for example He = '12/ (xc )+;/ 

With 1 large enough to make He positive definite. Then it is guaranteed that 

J (z +) < J (xc) for sufficiently small positive Xr; . In the second case. ac is nonne­

gative if 'fi2/ (zc:} is positive definite, and larger than the magnitude of the most 

negative eigenvalue of V2/ (xc:) otherwise. It is guaranteed that f (x +) < f (xc) 

for sufficiently large positive ac. The conic methods we discuss use the same 

strategies: no further understanding of these strategies is required for the pur­

poses of this paper. 

Modifications (2.16) or (2.17) sucessfully deal with the problem of defining a 

satisfactory step when V2 f (xc) is singular or ill-conditioned. However, standard 

methods still usually converge linearly at best to a point where Vf (x11.)=0 and 

~I (x 11) is singular. 

Finally. Newton's method for unconstrained minimization requires both the 

gradient vector V/ (x) and the Hessian matrix V2/ (x ). If the gradient is not 

available analytically. it must be approximated by finite differences since accu­

rate gradient values are essential. If the Hessian matrix is not available, V2 f (x) 

is replaced by a finite difference approximation if evaluation off (x) is inexpen-

sive. by a secant approximation otherwise. Secant approximations for uncon­

strained minimization are derived similarly to Broyden' s update for nonlinear 

equations. After a step from xc to x +• the approximation He to V2/ (xc) is 

updated into an approximation H + to V2f (x ... ) obeying 

(2.18) 
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where 

s~ = .x+- Xc, Yc = Vf (x+)- 'lf (xc ). 

Thus the quadratic model 

m(.x++d) = f (x+) + 'Vf (x+)T d + If£dT H +d 

satisfies the interpolation conditions 

(2.19) 

(2.20) 

(2.21) 

ln addition, H + is chosen to be symmetric since v·~'/ (x) always is symmetric. 

Still, many symmetric H + satisifying (2.18) exist; the most used choice is the 

Broyden·Fletcher-Goldfarb-Shanno (BFGS) update 

(2.22) 

lf He is positive definite and 

s[yc > 0, (2.23) 

H + is positive definite as well. In practice the initial approximant H 0 is chosen 

to be positive definite and the step selection strategy enforces (2.23), so all the 

BFGS approximants to the Hessian are positive definite. This simplifies the 

modifications required to achieve global convergence. The local method result­

ing from using (2.22) to define the Hessian approximations and 

(2.24) 

to define the steps is locally superlinearly convergent to a point x. where f (x) 

and x. obey the conditions for the q-quadratic convergence of Newton's method, 

if in addition fJ2 J (.xa) is positive definite and H 0 is sufficiently close to tP f (x 0). 

In summary, we divide the methods considerecl in this paper into the four 

categories given in Table 2.1 below. Table 2.1 also lists the information interpo­

lated by the local models at xc used by the standard methods for each category. 

We denote the iterate before .xG by Xprev. 

In Section 4 we also refer to another type of method for unconstrained 

minimization. conjugate direction methods. These methods are related to 
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Table 2.1 -- Categories of methods considered in this paper 

(1) 

(2) 

{3) 

(4) 

First derivative methods for nonlinear equations 
local model at Xc interpolates F(xc ), F(xc:) 

Secant methods for nonlinear equations 
local mo¢iel at Xc: interpolates F(xc), F(xpTSv) 

Second derivative methods for unconstrained minimization 
local model at Xc interpolates J (xc ), \If (xc ), V2/ (xc) 

Secant methods for unconstrained minimization 
local model at Xc interpolates I (xc ), \If (xc ), Vf (xprav) 

secant methods for unconstrained minimization in that they use function and 

gradient information only. They differ in that do not use any approximation to 

the Hessian, and require only 0 ( n) storage. Thus they are mainly intended for 

problems where n is large and the use of O(n 2) storage locations is undesirable. 

Many of them have the property that if I (x} is a positive definite quadratic, then 

the nth iterate of the method will be the minimizer x.. Space does not permit 

us to describe conjugate direction methods further here; they are described 

thoroughly in Fletcher [ 1980], Hestenes [ 1980], and Gill, Murray, and Wright 

[1981]. 

The conic and tensor methods to be described are based on generalizations 

of the models discussed in this section. As motivation, Table 2.2 summarizes the 

properties of a good model. 
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Table 2.2 ,._Properties of a good model for nonlinear equations or 
unconstrained minimization 

( 1) The model should interpolate useful information. 
(2) The model should be a useful approximation to the problem. 
(3) The model should be easy to form. 
( 4) The model should be easy to solve. 

Conic and tensor models aim to improve properties 1 and 2 without seri-

ously harming properties 3 and 4. The hope is that the additional costs incurred 

in items 3 and 4 will be offset by gains in the efficiency or success rate of the 

algorithm. As a point of reference, Table 2.3 summarizes the costs that may be 

used to measure the efficiency of algorithms for nonlinear equations or uncon-

strained minimization, and where applicable. the costs incurred by the standard 

methods. 

Table 2.3 -- Costs of solving nonlinear equations or unconstrained minimization 
problems by standard methods 

(1) Algorithmic overhead (dominated by cost of solving the linear system 
to find the Newton or secant step; O(n3) for derivative methods, O(n2) 
for secant methods) 

(2) Storage (between n 2/2 and 2n2 locations) 
(3) Evaluations of F(x) or f (x ), and possibly derivatives 

In many practical applications, the evaluations of F(x) or f (x) are very 

expensive and are the dominant cost. Therefore when assessing the efficiency of 

new methods, it is desirable that they solve problems using fewer evaluations of 

the nonlinear function. It also is important, however, that they do not appreci­

ably increase the algorithmic overhead or storage requirements of the standard 

algorithms. 
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3. Interpolating additional information using standard models 

Conic and tensor models interpolate more function and derivative informa-

lion than the standard models listed in Table 2.L by using a more general 

model. In one of our four prs>blem classes, secant methods for nonlinear equa­

tions, it is in fact possible to interpolate additional inform.ation using the stan­

dard model. For unconstrained minimization. this is only possible in general for 

quadratic objective functions. We briefly discuss these ideas to motivate further 

conic and tensor methods. 

Secant methods for nonlinear equations use the model 

M(x++d) = F(x.._) + J+d 

to model F(x) around x .._. The secant equation 

(3.1) 

J tSc = Yc (3.2) 
·,. 

guarantees M(xc) = F(xc ). Suppose we also want the model to interpolate the 

function values F(x -i) at some previous iterates x-i, i = 1, · · · ,p. This requires 

(3.3) 

or 

(3.4) 

where 

(3.5) 

Since J ..- is an nxn matrix, we may satisfy (3.2), plus (3.4) for up to n -1 

values of i, as long as sc:, s 1• · • • • sn-t are linearly independent. This possiblity, 

and a generalization of Broyden' s method that achieves it, was first proposed by 

Barnes [ 1965]. However the method was not very successful in practice; prob-

lems arose when the directions to the past points sc. s 1, · · · • sn-l were linearly 

dependent or close to being dependent. Gay and Schnabel [ 1978] revived and 

modified Barnes' idea. By limiting the set of additional past function values to 

be interpolated top <n points for which sc, s 1, · · · , sP are strongly linearly 
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independent, they were able to construct a locally q-superlinearly convergent 

algorithm that appears quite competitive with a standard Broyden's method 

algorithm in practice. We do not discuss their method further here. We 

emphasize, however, the two ideas that will recurr in the forthcoming methods: 

i) using the model to interpolate function values at previous iterates, and ii) lim­

iting these previous iterates, possibly in a fairly restrictive manner. 

The obvious extension of the idea of Barnes and Gay and Schnabel to uncon­

strained minimization does not work in general. The extension would be to ask 

the secant model of I (x) around x +• 

(3.6) 

to interpolate VI (x--;,) at some preVious iterates x_i as well as interpolating 

Vf (xa} at Zc. The difficulty comes from the required symmetry of H+. Suppose 

for the model (3.6), Vm(x,;)=V/ (x,;) and Vm(x_1)=VJ (x_1). This would require ,, 

fl+sc = Yc and H+sl = y 1 

where s, and s 1 are defined as above and 

Yc = V/ (z+)- Vf (xc), Y1 = VJ (x+)- Vf (x-t). 
Since H +is symmetric, (3.7) would imply 

(3.7) 

(3.8) 

sfyc = s[yl (3.9) 

since both sides of (3.9) equal s[H+sc. While (3.9} is satisfied if J (x) is a qua-

dratic. it is not satisfied in general for nonquadratic functions. 

Davidon [ 1975] proposed a secant method for unconstrained minimization 

that interpolates up ton past gradients when I (x) is quadratic, and suggested 

an extension to general objective functions. Schnabel [ 1977] studied Davidon's 

method and proposed several other extensions. None of these have proven supe­

rior to the standard secant methods for unconstrained minimization in practice. 

The desire to interpolate additional previous function or gradient information 

partially motivates some of the conic methods for unconstrained minimization 
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that we discuss next. 

4. Conic methods for unconstrained minimization 

The use of conic models in unconstrained minimization algorithms was first 

proposed by Davidon [1980] and m~ch of the following background material is 

contained in his paper. A conic function has two equivalent algebraic forms. 

One is the ratio of a quadratic function divided by the square of a 'linear func-

lion, 

c (d) :: I + h T d + ¥ld T Bd 
(1+bTd)2 

where fER, a,d.,hERn, BE:.Rnxn. Equation (4.1) is equivalent to 

where 

9 = h - I b I A = B - gb T - bg T - 2/ bb T. 

(4.1) 

(4.2) 

(4.3) 

The form ( 4. 2) is used for the remainder of this section. The function c (d) is 

called a conic because its level sets are conic sections, i.e., circles, ellipses, par­

abolas, or hyperbolas. Figure 1 is an example of a conic function in one variable. 

Note the discontinuity inc (d); in general, function (4.2) is discontinuous along 

then -1 dimensional hyperplane ~d ll +b T d=OL called the horizon of c (d). The 

vector b is called the gauge vector. 

The conic function (4.2) is related to the quadratic 

(4.4) 

by 

(4.5) 

Equation (4.5) is known as a collinear scaling of d; if d and s are related by (4.5) 
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c. (d) 

- d *d2 

Figure 1 --The conic function of one variable c (d) - 1 + 1 +d + (l+d)2 

then 

(4.6) 

Collinear scalings map straight lines to straight lines. affine subspaces to affine 

subspaces, and most generally, convex sets to convex sets. Furthermore, they 

e.re the most general transformation with these properties. (A collinear scaling 

may have a slightly more general form than (4.5): see Davidon [1980).) Of 

course, the mapping ( 4.5) has the discontinuity mentioned above. The relation-

ship between conics and quadratics may be used to derive some of the conic 

algorithms described in this section, particularly the conjugate direction algo­

rithms of Davidon [1982] and Gourgeon and Nocedal [1982]. 
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To justify the use of the conic function (4.2) in unconstrained minimization 

algorithms, first we must ask whether a model of this form is appropriate for use 

in minimization algorithms, and then, to what use the extra degrees of freedom 

in the model may be put. The answer to the first question is obtained using the 

same technique that may be used to find the minimzer of a quadratic. Since for 

nonsingular A, ( 4.2) can be written 

c (d)=*[ 1 +: T d + A-lgr A [ l+:T d + A-'g] + (/ - }?gT A-lg ), (4. 7) 

c(d) has a unique minimer only if A is positive definite. In this case, the minim­

izer is any d satisfying 

d + A-1 = 0 
l+bTd g (4.8) 

if (4.8) has a solution. From (4.6), the solution to (4.8) is 

(4.9)' 

as long as 1+bTA- 1g~O. So roughly speaking, a conic model has a unique 

minimizer in almost the same cases as a quadratic does, that is, when the 

matrix in the model is positive definite. 

To use a conic function of form (4.2) as a model in a minimization algo­

rithm, presumably it should interpolate some function and derivative values of 

f (x ). The first two derivatives of c (d) are 

(4.10) 

Thus 

(4.12) 
Therefore to model J (x) around Xc with a conic model, one should use a model 

or the form 
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(4.13) 

since it satisfies 

(4.14) 

for any be ERn and Ac E:Rnxn. From (4.12), the second derivative matrix of this 

model is 

( 4.15) 

Most of the research on conic methods is based on a model of form ( 4.13). 

If Ac: is positive definite and 1 + b[ ~-tv f (xe) ~ 0, it has a unique minimizer at 

(4.16) 

the minimizer is on the same side of the horizon as Xc if and only if 

1+b[Ao-1Vf (xe) >0. In the remainder of this section, we describe how several 

authors have used conic models in unconstrained minimization algorithms. This" 

includes the choice of the parameters Ac and be in ( 4.13). It is important to 

note that the matrix Ac wil be different than the matrix used in standard 

methods for unconstrained minimization. Thus the direction as well as the mag~ 

nitude of the step to the minimizer of the conic model will be different. 

Davidon [ 1980] and Sorensen [ 1980] consider the use of a conic model in a 

secant met~od for unconstrained minimization. As in our discussion of secant 

methods in Section 2, assume we have taken a step from Xc to x +, and are con­

structing a new conic model off (x) around x +• 

... Vf (x+)Td ~T A+d 
m(x++d) = f(x+) + 1+b!d + (l+b!d)2. ( 4.17) 

David on and Sorensen show how to use this model to o blain 

(4.18) 

as well as m(x+) = f (x+) and Vm(x+) = Vf (x+) which are satisfied for all values 

of b + and A.... Let sc; = x + - Xc, The first interpolation condition in ( 4.18) 
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requires 

VI (x ... )Tsc ~[A ... sc 
f(xc) =f(x ... )- 1-brsc + (1-brsc)2 (4.19) 

while the second is satisfied if 

~~~····· J ____ ~J b ... s[ f Asc 
VJ(xc) =~I+ 1-brsc lVf (xt-)- 1-brsc (4.20) 

Let {J = 1-bfs~. Taking the inner product of (4.20) with sc and then using (4.19) 

to eliminate the s[ Atsf: term yields 

(4.21) 

lf (4.21) has a nonzero real solution (this can be assured by the choice of 'Ac in a 

line search algorithm), then any b+ that satisifies 

together with any A ... that satisfies 

A-~:-sc: = p'V I (x ... ) - (32'V I (xc) + (32b ... s[v J (xc) 

causes the model (4.17) to satisfy (4.18). 

(4.22) 

Thus by using ( 4.21), ( 4.22), and ( 4.23), the conic model ( 4.17) satisfies the 

three interpolation conditions (2.21) satisfied by standard secant methods for 

unconstrained minimization, plus m(xc) = f (xc ). This causes the step to the 

minimizer of the conic model to depend on function as well as gradient values, 

whereas in a standard secant method, the minimizer of the model is determined 

solely by gradient values. This fact is cited by several authors as a reason why 

algorithms based on conic models should be more efficient than the correspond­

ing algorithms based on quadratic models. 

Sorensen [1980] proves the local q-superlinear convergence of an algorithm 

of the type we have just described. His algorithm assures that all the matrices 

A+ are positive definite through the choice of the line search parameter, the 

proper choice from among the two nonzero roots of (4.21), and by using BFGS 

updates. The parameter b+ is chosen in the direction Vf (xc). Sorensen also 
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presents some promising test results, but they are from a very limited set of 

tests, and considerably more testing would be required to establish the utility of 

this approach. 

Davidon ( 1980] also shows how A+ and b + may be chosen so that the model 

satisfies the additional interpolation conditions 

(4.24) 

when f (.x) is a conic function, where as in Section 3 t.x-i J are past iterates. For 

nonconic functions this is not usually possible, however, and to our knowledge, 

this idea has not yet been used to make a general purpose unconstrained 

minimization algorithm. 

Schnabel [1982b] and Stordahl [1980] study the use of the model (4.13) 

when the Hessian matrix is available analytically or by finite differences. The 

model they use is 

nl.(.Xc +d) ::: 

f(x) + Vf(xc)Td + !fldT(V2f(xc)+bcVf(xc)T+Vf(xc)bl)d 
c l+b,Td (1+b[d) 2 (4.25) 

From (4.14) and (4.15). (4.25) satisfies 

(4.26) 

for any be €Rn. The vector be then may be chosen to allow the model to interpo­

late additional information. Schnabel and Stordahl impose the requirement 

(4.27) 

at ps;;n past iterates x_,. Substitution into (4.25) shows that this model satisfies 

(4.28) 

where 
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(4.29) 

The term inside the square root in ( 4.28) may be negative but rarely is in prac­

tice. Since (4.28) only determines the projection of be in the direction si, the 

conic model (4.25) may interpolate up ton past function values f (x-i) as long 

as the directions to the past points, si. are linearly independent. Iff (x) is qua­

dratic. the right. hand side of ( 4.28) is zero so the choice be =0 is allowed. 

Schnabel and Stordahl tested an algorithm based on the above model. They 

found it advantageous to limit the number of past function values interpolated 

at any iteration to p~..Jii. and to require the directions s-;. to the past points to 

be strongly linearly independent of each other; roughly speaking, each direction 

s, that is used must make an angle of at least 45 degrees with the linear sub­

space spanned by the other directions ls.t J that are used. They chose be to be 

the minimum l 2 norm solution to the underdetermined system of equations 

b Ts -a -:-1 ·· · p C i - i I c.- t I ' (4.30) 

Schnabel and Stordahl compared their algorithm to an algorithm that used 

the standard second derivative quadratic model but was identical tn all other 

respects, on the unconstrained minimization test problems in More'. Gar bow, 

and Hillstrom [1981]. Each algorithm used the strategy in Dennis and Schnabel 

[1983] to augment Vf (xc) or Ac to be positive definite when necessary, and then 

chose the next iterate using a line search. Out of 32 test runs, the conic algo­

rithm was more efficient (in iterations and function evaluations) on 19, less 

efficient on 11, and tied on 4; on the average, the conic algorithm required 18% 

fewer iterations and 21% fewer function evaluations than the quadrtic algorithm. 

It is not clear whether these results justify the added complexity of the conic 

method. 

Another possibility in using model ( 4.25) is to choose be so that Vm(:.r: _1) 

= 'Vf (x-1) where z_1 is the most recent past iterate. This is more in keeping 
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with the philosophy of the algorithms of Davidon and Gourgeon and Nocedal dis­

cussed next. as it implies that m(x) =I (x) if f (x) is a conic function. We 

currently are investigating this approach. 

Davidon [1982] and Gourgeon and Nocedal [1982] have proposed a conjugate 

direction method based on conic models. It is a generalization of the standard 

conjugate gradient method for minimizing quadratics (Hestenes and Stiefel 

[ 1952]) and finds the minimizer of a conic function in at most n iterations. An 

extension of these methods to nonconic functions has not yet been developed, 

however, so no comparison with existing conjugate direction methods for uncon­

strained minimization is possible. 

Since we do not include a thorough treatment of conjugate direction 

methods in this paper, we just give a brief description of David on's and Gourgeon 

and Nocedal's algorithms. The key feature is that they show that if 1 (x) is a' 

conic function, then given the values of f (x) and Vf (x) at any three collinear 

points, the value of the gauge vector b can be determined. The value of the 

gauge vector changes as the conic is expanded around different points, but only 

by scalar multiples that Davidon and Gourgeon and Nocedal also show how to cal­

culate. Using this information, they are able to generalize the conjugate gra~ 

dient algorithm to exactly minimize the conic function along a line d~e at the k"" 

iteration, while also choosing d~e so that the next iterate xk+l is the minimizer of 

the conic in the affine subspace spanned by the lc -1 previous step directions d 1, 

• · · • d~c -l as well. Thus the algorithm minimizes a conic function in n or fewer 

iterations, without storing or using an nxn matrix. Gourgeon and Nocedal point 

out several possible numerical instabilities in implementing this algorithm, and 

seem to remedy them satisfactorily. 

Davidon [ 1982] also proposes a related algorithm that again minimizes a 

conic function inn or fewer iterations, and also accumulates an approxi,mation 
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to the matrix A in (4.2) as it proceeds. If J (x) is conic, after n iterations this 

approximation is A = 'V2f (x.). Gourgeon and Nocedal state that the sequence 

of points generated by their algorithm and Davidon's two algorithms is identical 

for conic functions, if exact arithmetic is used. Davidon's secant algorithm 

probably could be extended into a new secant conic algorithm for unconstrained 

minimization. This extension would require the evaluation off (x) and 'V/ (x) at 

three collinear points on some or all iterations, as would an extension of the con­

jugate direction algorithms of Davidon or Gourgeon and Nocedal to nonconics. 

Finally. Bjorstad and Nocedal [ 1979] show that the secant conic algorithm 

originally proposed by Davidon converges quadratically under reasonable 

assumptions when applied to one dimensional problems. This rate is faster than 

the order (1 +v'5/2) ~ 1.61 convergence rate of the secant method on one dimen­

sional problems. Similarly, the second derivative conic method of Schnabel and 

Stordahl converges with order 1 +"-'2 ~2.41 on one dimensional problems, com­

pared to the quadratic convergence of Newton's method. These results probably 

have practical importance only if they extend to multiple dimensions, which is 

very unlikely. 

5. Tensor methods for nonlinear equations 

Tensor models for nonlinear equations augment the standard linear model 

of F(:x) around Xc by a second order term. The most obvious tensor model is 

the first three terms of the Taylor series, 

(5.1) 

where F''ERn')(nxn. However the use of model (5.1) in a nonlinear equations algo­

rithm would violate many of the principles expressed at the end of Section 2. In 

particular. the model would require at least 0 (n 5) additional operations to form 
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and roughly n 5! 2 additional locations to store, and finding a root of the model 

would require solving a system of n quadratic equations at n unknowns at each 

iteration. Any of these costs clearly is unacceptable. 

Instead, Schnabel and Frank [ 1982] have proposed the use of a model of the 

form 

(5.2) 

where Tc ERnxnxn has a particulary simple form. In particular, the additional 

costs of forming, storing, and finding a root of the tensor model all are small in 

comparison to the corresponding costs already required by Newton's method. 

In this section, we summarize how Schnabel and Frank determine the term Tc in 

(5.2), how the resultant model is solved efficiently, and how a nonlinear equa-

tions method utilizes this method. Finally, we summarize some of their test 

results. 

The main motivation for the work of Schnabel and Frank was to construct a 

general purpose method that would be more efficient than standard methods on 

problems where F·(x.) is singular or ill-conditioned, and at least as efficient as 

standard methods on all other problems. An early version of their work is 

reported in Frank [ 1982]. For practical purposes, it probably would be more 

desirable to have a secant tensor method that does not require values of F(x ); 

we currently are working on such an extension. 

To determine the tensor term Tc in (5.2), we require the model M(xc +d) to 

interpolate the function values F(x_i) atp5.Vn previous iterates x_1, · · ·, x-p· 

Substituted into (5.2), this requirement is 

(5.3) 

where 

(5.4) 

The upper bound of Vn past points was suggested by the computational 
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•experience of Schnabel and Stordahl mentioned in Section 4 for conic methods 

!that use past function values: it also is required to keep the costs of forming and 

:solving the tensor model small. The past points are selected by the same 

!method as is used in Schnabel and Stordahl's conic code. At each iteration, the 

rmost recent past point is selected. Then, fori =2, · · · I ...Jii I the itn. past point is 

~selected if it makes an angle of at least 45 degrees with the affine subspace 

:spanned by the already selected subset of the 1st through i-1 st past points. 

·The p'!!5....;n interpolation conditions (5.3) result in np linear equations in the 

1n 3 elements of T, I meaning that Tc is underdetermined. Following successful 

!precedent in determining secant updates for nonlinear equations (see e.g. 

!Dennis and Schnabel [ 1979]), Schnabel and Frank choose the Tc that solves 

minimize II Tc IIF 
fcERnxnxn (5.5) 

tWhere II·IIF denotes the Frobenius norm. They show that the solution to (5.5) has 

!the form 

Tc = t ~ si s, (5.6) 
i=l 

~where a;, ERn. i = 1. · · · ,p and ~ si si denotes the rank one tensor whose i ,j ,k 

1 element is ~ [ i l s,:[j} si [ k]. Thus T, is a rank p tensor. The p vectors a.;, ERn 

;are calculated by solving one symmetric and positive definite p xp system of 

llinear equations with n different right hand sides, requiring a total of np2 s; n 2 

teach multiplications and additions. 

1 Given the form (5.6) of Tc, the tensor model (5.2) becomes 

(5.7) 

'Therefore a maximum of 2n Ui additional storage locations are required for the 

:tensor term, to store the p C1.t and si vectors. (The x-i and si vectors can share 
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storage.) The dominant arithmetic cost in forming the tensor term is the n2-p 

~ n 2·6 multiplications and additions required to form the p right hand sides of 

(5.5). Neither of these costs is significant in comparison to the n 2 locations and 

O(n3) arithmetic operations required to store and solve the standard linear 

model. 

To use M(xc +d) given by (5. 7) in an algorithm for nonlinear equations, 

presumably we need to be able to find a d'M€Rn for which M(xc +dJE)=O. However 

the model may not always have a real root, as is obvious by considering the one 

dimensional case, and in this case it seems reasonable to find a d,. that minim-

izes IIM(xc: +d)ll2. Thus in general we need an efficient procedure for solving 

minimize IIM(xc +d}l!2 
d.,.ERn 

(5.8) 

for M(xc +d) given by (5.7). Schnabel and Frank show how to reduee (5.8) to ao 

much smaller problem of the form 

minimize II Q(z )liz, Q: RP -+Rq (5.9) 
t~ERP 

where the q equations in p unknowns Q(z) are quadratic and p-s.q-s.n, with usu-

ally q =p. The reduction is accomplished using orthogonal transformations of 

the variable and function spaces. It requires the QR decomposition of F(xc) 

which also usually is used in a Newton's method algorithm and takes 2n3/ 3 each 

multiplications and additions; the next leading term in the reduction is 2n2p 

~ 2n2·6 additional multiplications and additions which is insignificant in com-

paris on. 

Now to find a root or minimizer of the tensor model ( 5. 7) we still must solve 

the nonlinear problem (5.9); however, this is inexpensive due to the reduced 

number of variables in (5. 9). To solve (5.9) by a nonlinear least squares algo­

rithm costs O(p2q) arithmetic operations per iteration, and in practice a max­

imum of 2p iterations suffices. Thus the total cost of solving (5. 9) is O(p3q) 
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operations. which is ~O(n2) in the normal case when p =q, and ~O(n2·5) in all 

cases. Given the solution to (5.9), the solution to (5.8) is obtained by backsolv­

ing and requires O(n2) arithmetic operations. Therefore the total cost of fmding 

a root or minimizer of the tensor model is not significantly more than calculat­

ing the root of the standard linear model using a QR factorization. It is twice as 

expensive as calculating the root of the standard linear model using Gaussian 

elimination; however many production codes do use the QR factorization 

because it facilitates the global portion of the algorithm and the modifications 

required when F'(xc) is ill-conditioned (see Dennis and Schnabel [1983]}. 

An important point is that the model (5. 7) may have isolated solutions even 

when P(xc) is singular and F(xc) is not contained in the subspace spanned by 

the columns of F'(xc ); if so the method of Schnabel and Frank should find a solu­

tion. Similarly, (5.8) often is not an ill-conditioned problem when the solution of 

the linear model would be. Jt is hoped that these properties are beneficial on 

problems where F(x.,.) is singular. Another interesting issue is that (5.7) usually 

has multiple roots or minimizers; we try to find the d.,. closest to the Newton 

step, by appropriately choosing the starting point z 0 ERn in the algorithm that 

solves (5.9). 

Schnabel and Frank have tested an algorithm based on a preliminary ver­

sion of the above techniques. At each iteration, after determining the solution 

d• to (5.8), it takes x,. = Xc +dJt if this is an acceptable next iterate. If not it 

does a line search in the Newton direction if d• is not a descent direction, or 

occasionally if it prefers the Newton direction for other reasons given in Frank 

[1982], otherwise it does a line search in the direction d •. Schnabel and Frank 

compare their algorithm to an algorithm that uses the standard linear model 

exclusively but otherwise is identical to the tensor algorithm, using the test 

problems in More', Garbow, and Hillstrom [1981]. For all but one of these prob­

lems (Powell's singular function) F'(x.) is nonsingular, so they also construct 
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singular versions of the problems in More', Garbow, and Hillstrom, as described 

in Schnabel and Frank [ 1982]. The dimensions of the problems range from 2 to 

50, with most of the problems having dimension between 10 and 50. 

Detailed results of these tests are given in Frank [1982] and in Schnabel 

and Frank (1982]. In summary, on 44 problems where F'(x~) is nonsingular, the 

tensor method requires fewer iterations and function and Jacobian evaluations 

than the standard method in 30 cases, the same number in 13 cases, and more 

in 1 case. The improvements rarely are by more than 20%, however most of 

these problems are quite easy when using analytic Jacobians, requiring 10 or 

fewer iterations. On a set of 37 problems where F(x:«) has rank n-1, the tensor 

method requires fewer iterations and function and Jacobian evaluations in 26 

cases. the same number in 8 cases, and more in 3 cases. Here the improvement 

by the tensor method is far more dramatic; the standard method fails to solve 

11 of the 37 problems in 150 iterations, while the tensor method solves all of 

these in at most 27 iterations. On a second differently constructed set of 25 

problems where F(x.) again has rank n -1, the tensor model requires fewer 

iterations and function and Jacobian evaluations in all cases. The standard 

method solves 24 of these; on these problems, the tensor algorithm requires an 

average of 53% of the iterations and 58% of the function evaluations used by the 

standard algorithm. Finally, on 37 problems where F'(xJ() has rank n-2, the 

tensor model again does better in 26 cases, the same in 8, and worse in 3, again 

with substantial improvements in many cases. Clearly these results show prom­

ise for the tensor methods. 



29 

6. Future applications of conic and tensor models 

Methods that use conic and tensor models are still in their infancy. 

Depending upon their success, conic and tensor models might eventually be 

used in many areas of optimization besides the ones described in Sections 4 and 

5. In this section we comment briefly on some of these possibilities. 

Conic models or collinear scalings do not seem suited to the nonlinear equa· 

tions problem. The collinear transformation of the standard linear model for 

nonlinear equations, 

{6.1) 

suffers from the fact that its root is in the Newton direction -F(xc )-1F(xc) for 

all values of be; thus, only a steplength parameter is introduced. On the other 

hand, conic models certainly could be applied to nonlinear least squares or cond, 

strained optimization problems. They also may be useful for solving special 

classes of optimization problems, for example penalty functions where the hor­

izon of the conic function might help reflect the shape of the penalty function. 

Hopefully, tensor models can be applied to all four problem classes listed in 

Section 2, derivative and secant methods for both nonlinear equations and 

unconstrained minimization. In fact, our own main practical interest would be 

in a secant tensor method that quickly solves unconstrained minimization prob­

lems with V2/ (x.) singular or ill-conditioned, because we see many such prob­

lems in practice. An example is overparameterized data fitting problems, where 

in our experience the objective function usukilly is sufficiently expensive to 

evaluate that secant methods are preferred. The extension of the method of 

Section 5 to a secant method for nonlinear equations, and the extension to 

unconstrained minimization, both appear to present challenging problems. The 

tensor method of Section 5 generalizes virtually without change into a Gauss-
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Newton or Levenberg-Marquardt type method for solving the nonlinear least 

squares problem, and since the analytic or finite difference Jacobian always is 

used in this setting, such a method would be of practical interest. Tensor 

methods also may be useful in finding complex solutions to nonlinear equations 

or optimization problems. 

Finally, there certainly are other nonstandard models besides conics and 

tensors that could be considered for nonlinear equations or optimization prob­

lems. The main contribution of conic and tensor models may be that they cause 

researchers to consider various nonstandard models, and that some of these 

prove to be useful in practice. 
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